Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
171 result(s) for "Tietze, Andreas"
Sort by:
Modification and de novo design of non-ribosomal peptide synthetases using specific assembly points within condensation domains
Non-ribosomal peptide synthetases (NRPSs) are giant enzyme machines that activate amino acids in an assembly line fashion. As NRPSs are not restricted to the incorporation of the 20 proteinogenic amino acids, their efficient manipulation would enable microbial production of a diverse range of peptides; however, the structural requirements for reprogramming NRPSs to facilitate the production of new peptides are not clear. Here we describe a new fusion point inside the condensation domains of NRPSs that results in the development of the exchange unit condensation domain (XUC) concept, which enables the efficient production of peptides, even containing non-natural amino acids, in yields up to 280 mg l . This allows the generation of more specific NRPSs, reducing the number of unwanted peptide derivatives, but also the generation of peptide libraries. The XUC might therefore be suitable for the future optimization of peptide production and the identification of bioactive peptide derivatives for pharmaceutical and other applications.
De novo design and engineering of non-ribosomal peptide synthetases
Peptides derived from non-ribosomal peptide synthetases (NRPSs) represent an important class of pharmaceutically relevant drugs. Methods to generate novel non-ribosomal peptides or to modify peptide natural products in an easy and predictable way are therefore of great interest. However, although the overall modular structure of NRPSs suggests the possibility of adjusting domain specificity and selectivity, only a few examples have been reported and these usually show a severe drop in production titre. Here we report a new strategy for the modification of NRPSs that uses defined exchange units (XUs) and not modules as functional units. XUs are fused at specific positions that connect the condensation and adenylation domains and respect the original specificity of the downstream module to enable the production of the desired peptides. We also present the use of internal condensation domains as an alternative to other peptide-chain-releasing domains for the production of cyclic peptides.
The Present State of the Study of Turkisms in the Languages of the Mediterranean and of the Balkan Peninsula
The study of Turkish influences in Mediterranean languages has been flawed by the lack of a good etymological dictionary of Turkish. Further, preliminary studies that could provide material for an overview of Turkish influence in the Mediterranean are uneven, with detailed studies of some langs & almost total lack of study of others. In addition, most studies have been based on dictionaries of Standard Turkish, whereas regional vernaculars can be assumed to have been the forms that would have influenced most contact langs. Some recent work on Turkish Mediterranean language studies is reviewed, most of which relates to Slavic langs. B. Annesser Murray
Modification and de novo design of non-ribosomal peptide synthetases (NRPS) using specific assembly points within condensation domains
Many important natural products are produced by non-ribosomal peptide synthetases (NRPSs). These giant enzyme machines activate amino acids in an assembly line fashion in which a set of catalytically active domains is responsible for the section, activation, covalent binding and connection of a specific amino acid to the growing peptide chain. Since NRPS are not restricted to the incorporation of the 20 proteinogenic amino acids, their efficient manipulation would give access to a diverse range of peptides available biotechnologically. Here we describe a new fusion point inside condensation (C) domains of NRPSs that enables the efficient production of peptides, even containing non-natural amino acids, in yields higher than 280 mg/L. The technology called eXchange Unit 2.0 (XU2.0) also allows the generation of targeted peptide libraries and therefore might be suitable for the future identification of bioactive peptide derivatives for pharmaceutical and other applications.